Эпигенетические механизмы наследственности. Контроль активации генов

Статьи » Получение рекомбинантного аденовируса CELO » Эпигенетические механизмы наследственности. Контроль активации генов

Существует мнение, что все свойства клетки и даже многоклеточного организма однозначно определены последовательностью нуклеотидов в ДНК. В настоящее время это положение подвергается критике. Выдвинуты представления об эпигенетических механизмах избирательной экспрессии генов, ведущая роль в которых принадлежит хроматину. Именно на уровне хроматина работают основные механизмы программирования развития живого организма. Эти механизмы базируются на структурно-функциональных особенностях нуклеосомы, гистонов, формирующих нуклеосомную сердцевину, межнуклеосомных взаимодействиях, тонко регулируемых внешними сигналами. На уровне нуклеосомы реализуется «гистоновый код», управляющий сложнейшим каскадом биохимических реакций в клетке. Все вышеуказанные механизмы обеспечивают важнейшее приспособление организмов к изменяющимся условиям внешней и внутренней среды.

Геном каждой клетки человека составляет около 40 тысяч генов, но все они одновременно не используются. В каждом клеточном типе работает около 20 тысяч генов. Как минимум половина всех работающих генов необходима для поддержания жизнедеятельности любой клетки, другая половина определяет специализацию клетки, т.е. будет ли она принадлежать печени, почкам, селезёнке, другому органу или ткани. Все клетки содержат одинаковую информацию, записанную в молекуле ДНК, но при развитии организма эта информация в тканях или органах считывается избирательно, что и приводит к огромному разнообразию клеток в организме.

Существует несколько уровней контроля активации генов. Один из них - модификация ДНК, соответствующая тем генам, которые необходимо выключить, т.е. этот ген должен молчать в данном типе клеток. При этом данный признак сохраняется и при удвоении клетки. Однако ДНК сама по себе несёт важнейшую функцию кодирования аминокислотной последовательности белков, и человек не может произвольно её модифицировать, не затронув этой информации и не изменив способность ДНК к удвоению.

На сегодня единственной изученной модификацией ДНК, которая не нарушает кодирование и копирование, является метилирование цитозина, которое выключает ген и он становится молчащим, и, главное, это свойство закрепляется в наследственности, т.е. в дочерней клетке сохраняется информация о том, что данный ген должен молчать.

Как же эта модификация влияет на активацию гена - на получение РНК- копии данного гена, служащей в дальнейшем матрицей для синтеза белка?

Указанная модификация копируется при удвоении ДНК. Возможны два механизма контроля активации гена. Первый - отталкивание белков, активирующих ген, второй - привлечение к метилированной ДНК белков, которые селективно узнают только метилированную ДНК и участвуют в очень плотной её упаковке за счёт изменения структуры хроматина - формы существования генома высших организмов. Именно на уровне хроматина происходит основной контроль активации генов.

Благодаря расшифровке генома возникли две новые науки: геномика, изучающая геномы, и протеомика, изучающая совокупность клеточных белков. Почти 50 лет после открытия ДНК господствовал постулат: один ген синтезирует один белок. После расшифровки генома появилась новая догма: один ген - много белков. Установлено, что гены у высших организмов состоят из кодирующих и некодирующих участков. В результате комбинаторики из одного гена путём соединения кодирующих участков можно получить очень много белков. Если у человека около 40 тысячи генов (по геномике), то по протеомике можно получить минимально более 100 тысяч белков. Это только на уровне первичной структуры, фактическая ситуация ещё сложнее, потому что белки подвергаются модификациям, на них «навешивается» огромное количество разных групп, что приводит к колоссальному разнообразию. Если геном постоянен, то протеом очень вариабелен. Уотсон очень много сделал для расшифровки генома человека, которая закончилась в 2003 году /3/.


Прочие статьи:

Краткое описание свойств уксусной кислоты и ее констант.
Уксусная кислота СН3СООН – является типичным представителем органических кислород содержащих кислот. Она является бесцветной прозрачной жидкостью, более вязкой, чем вода (1,22 мПа*С) с характерным резким запахом. Данная кислота имеет плот ...

ДНК-рестриктазы и ДНК-метилазы
Это ферменты, впервые открытые как часть системы рестрикции- модификации ДНК у бактерий, специфически гидролизуют молекулы двухцепочечных ДНК при наличии в них определенных последовательностей нуклеотидов, называемых сайтами рестрикции. ...

Распространение и участок обитания песца
Песец распространен циркумполярно. Область обитания очень широка. Он населяет материки, начиная со Скандинавского и Кольского полуостровов через всю полярную Евразию и Северную Америку, Гренландию, Шпицберген, Новую Землю, Многие острова ...

Разделы