История развития вычислительных средств
Страница 1

Статьи » Концепции развития современных технологий и энергетики » История развития вычислительных средств

Для облегчения физического труда еще с древних времен изобретались разнообразные приспособления, механизмы и машины, усиливающие механические возможности человека. Но лишь немногие механизмы помогали человеку выполнять работу, похожую в каком-то смысле на умственную, хотя потребность в такой работе возникла очень давно. В течение долгого времени вначале использовались примитивные средства счета: счетные палочки, камешки и т.д. На заре цивилизации для облегчения вычислений стали применять счеты. Если раньше подавляющее большинство людей занималось физическим трудом, то в последнее время значительная часть работающих, особенно в развитых странах, занимается умственной деятельностью. Совершенно ясно, что без машин, способных резко усилить умственные возможности человека, теперь просто не обойтись.

Первые машины, выполнявшие арифметические действия, появились в XVII столетии: в 1642 г, Паскаль изобрел устройство, выполняющее сложение чисел, а в 1673 г. Лейбниц сконструировать арифмометр, позволяющий выполнять четыре арифметических действия. Начиная с XIX в. арифмометры получили очень широкое распространение. С их помощью производились даже сложные расчеты, например расчеты баллистических таблиц артиллерийского назначения. Существовала и специальная профессия - счетчик - человек, работающий с арифмометром, быстро и точно выполняющий определенную последовательность инструкций, впоследствии названную программой. Но все же многие расчеты производились довольно медленно, для осуществления некоторых из них даже десятки счетчиков тратили по нескольку недель, а иногда и месяцев. Причина такой медлительности проста - выбор выполняемых действий и запись результатов производились счетчиком, а скорость его действий весьма ограниченна.

В первой половине XIX в. была сделана попытка построить универсальное вычислительное устройство - аналитическую машину, которая смогла бы выполнять вычисления самостоятельно, без участия человека. Для этого она должна была исполнять программы, вводимые с помощью перфокарт (карт из плотной бумаги с информацией, наносимой с помощью отверстий), и иметь хранилище для накопления данных и промежуточных результатов (в современной терминологии - запоминающее устройство, память либо накопитель информации). Технические средства того времени не позволили реализовать идею создания аналитической машины: она оказалась слишком сложной для технического воплощения. Только спустя почти столетие, в 1943 г. с применением электромеханического реле - новинки XX в., была создана аналитическая машина.

Потребность в автоматизации вычислений различного назначения, в том числе и для военных нужд, стала настолько велика, что над созданием новых аналитических машин работало несколько групп исследователей и разработчиков. Подобную аналитическую машину начали конструировать уже на базе электронных ламп, а не реле. Такая машина работала в тысячу раз быстрее, чем ее предшественница. В дальнейшем приступили к разработке новой машины, способной хранить программу в своей памяти. В 1945 г. к этой работе подключился известный математик Нейман, который вскоре сделал получившее широкую известность сообщение об общих принципах функционирования универсальных вычислительных машин, получивших позднее название компьютеров.

Первый компьютер, в котором воплощены принципы Неймана, был создан в 1949г. С того времени компьютеры стали гораздо совершеннее, но большинство из них построено на принципах Неймана.

В настоящее время индустрия производства компьютеров и программного обеспечения для них - одна из важных сфер экономики многих стран. Чтобы более глубоко осознать причины такого стремительного роста компьютеров, вернемся к основным принципам их устройства и работы.

Согласно принципам Неймана, для универсальности и эффективности работы компьютер должен содержать следующие устройства: арифметико-логическое устройство, выполняющее арифметические и логические операции; устройство управления, которое организует процесс выполнения программ; запоминающее устройство, или память для хранения программ и данных; внешние устройства для ввода-вывода информации.

Страницы: 1 2


Прочие статьи:

Популяционно–статистический метод
В 1908г был сформулирован закон Харди–Вайнберга: p + q = 1 p2 +2 p q2 + q2 = 1 где р – частота доминантного аллеля; q – частота рецессивного аллеля; р2 – частота гомозигот по доминантному аллелю; q2 – частота гомозигот по рецессивно ...

Связь поверхностного натяжения с адсорбцией
Рассмотрим соотношение между адсорбцией и поверхностным натяжением в рамках теории регулярных растворов. Для обсуждения адсорбции растворенного вещества на поверхности жидкость-воздух необходимо определить, что такое поверхность. Первое о ...

Термодинамический анализ основной реакции. Исходные данные
Уравнение реакции: С2Н5ОН + О2 СН3СООН + Н2О Температурный интервал 10 ÷ 60ºC (283 ÷ 333 К) Шаг изменения температуры 10ºC Таблица 5. Исходные данные В-во ni , кДж/моль , Дж/(моль*К) А0 А1 ...

Разделы